Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 30: Nonequilibrium Quantum Systems I (joint session TT/DY)
DY 30.6: Vortrag
Mittwoch, 11. März 2026, 10:45–11:00, CHE/0091
Quantum Monte Carlo Nonequilibrium work estimator of Rényi negativites — •Jannis Kastell and David Luitz — Universität Bonn, Bonn, Germany
We develop a Quantum Monte Carlo method for the calculation of Rényi generalizations of the logarithmic negativity, an entanglement measure for mixed states. Extending previous works using the replica trick and nonequilibrium-work-based estimators of Rényi entanglement entropy, we adapt this framework to the moments of the partially transposed reduced density matrix at finite temperature. Using the stochastic series expansion (SSE) method, we compute these moments in bi- and tri-partitioned systems. We apply this approach to the spin-1/2 isotropic Heisenberg antiferromagnet on a 3D simple cubic lattice, analysing the scaling of the higher order moments with subsystem size for both contiguous and disjoint partitions. Our results demonstrate that this approach provides an efficient and scalable method for estimating mixed-state entanglement measures in large quantum many-body systems.
Keywords: Quantum Monte Carlo; Quantum Many Body Physics; Statistical Physics; Entanglement; Nonequilibrium Work