Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 41: Poster: Nonlinear Dynamics, Granular Matter, and Machine Learning
DY 41.13: Poster
Mittwoch, 11. März 2026, 15:00–18:00, P5
TANGO and Machine Learning Enhanced Experimentation for Real Time Tracking of Actively Steered Magnetic Particles. — •Nikita Popkov2,3, Nikolai Weidt1,2, Yahya Shubbak1,2, Rico Huhnstock1,2, Kristina Dingel2,3, Bernhard Sick2,3, and Arno Ehresmann1,2 — 1Institute for Physics and CINSaT, University of Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany — 2AIM-ED, Joint Lab of Helmholtzzentrum für Materialien und Energie, Berlin (HZB) and University of Kassel, Hahn-Meitner-Platz 1, 14109, Berlin, Germany — 3Intelligent Embedded Systems, University of Kassel, Wilhelmshöher Allee 71-73, 34121, Kassel, Germany
This work presents an AI-driven closed-loop framework for automating experimental tasks, demonstrated for the remote-controlled on-chip transport of magnetic particles. The system integrates machine learning models for particle detection, tracking, and classification, enabling dynamic feedback control during experiments. It autonomously adjusts experimental parameters to improve data quality and align outcomes with research objectives. The TANGO controls modular design allows adaptation to different experimental setups and hypotheses. Overall, it emphasizes how autonomous systems could iteratively optimize experiments, advancing the field of next-generation laboratory automation and, specifically for our experiments, the development of novel lab-on-a-chip devices.
Keywords: machine learning; intelligent experimentation; automated science