DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 42: Poster: Quantum Dynamics and Many-body Systems (joint session DY/TT)

DY 42.4: Poster

Mittwoch, 11. März 2026, 15:00–18:00, P5

Quantum Chaos in a Classical Counterpart to the Fermi-Hubbard model through an exact Path-Integral Formalism — •Louis Renck1, Wolfgang Hogger2, Juan Diego Urbina2, and Peter Schlagheck11IPNAS, CESAM research unit, Université de Liège, Belgium — 2Institut für Theoretische Physik, Universität Regensburg, Germany

Understanding quantum chaos in interacting many-fermion systems remains challenging : unlike many-bosons systems - where quantum-classical correspondence can be established using semiclassical tools such as the van Vleck-Gutzwiller propagator [1] -, most interacting fermions models still lack a sensible classical limit where Hamiltonian chaos can be defined.

We propose a candidate to the first classical Hamiltonian for the Fermi-Hubbard model with integrability broken by a random onsite potential. Starting from the fermionic Hamiltonian, we apply a Jordan-Wigner transformation and switch to the Schwinger-boson representation to obtain a bosonic form. A recently developed exact bosonic path-integral formalism [2] then provides a classical Hamiltonian symbol defined over a symplectic phase space. We investigate the resulting quantum-classical correspondence by comparing the effective dynamics with the quantum evolution, and we present quantitative checks of chaos based on spectral properties and out-of-time ordered correlators.

[1]. T. Engl, J. Dujardin, A. Argüelles, P. Schlagheck, K. Richter, and J. D. Urbina, Phys. Rev. Lett. 112, 140403 (2014).

[2]. F. Bruckmann and J. D. Urbina (2018)

Keywords: Quantum Chaos; Hubbard Model; Semiclassical; Path Integral; Fermions

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden