Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
DY: Fachverband Dynamik und Statistische Physik
DY 44: Poster: Active Matter, Soft Matter, and Fluids
DY 44.1: Poster
Mittwoch, 11. März 2026, 15:00–18:00, P5
Directed autonomous motion of active Janus particles induced by wall-particle alignment interactions — •Poulami Bag — Presidency University Kolkata
We propose a highly efficient mechanism to rectify the motion of active particles by exploiting particle-wall alignment interactions. Through numerical simulations of active particles' dynamics in a narrow channel, we demonstrate that a slight difference in alignment strength between the top and bottom walls or a small gravitational drag suffices to break upside-down symmetry, leading to rectifying the motion of chiral active particles with over 60% efficiency. In contrast, for achiral swimmers to achieve rectified motion using this protocol, an unbiased fluid flow is necessary that can induce orbiting motion in the particle's dynamics. Thus, an achiral particle subject to Couette flow exhibits spontaneous directed motion due to an upside-down asymmetry in particle-wall alignment interaction. The rectification effects caused by alignment we report are robust against variations in self-propulsion properties, particle's chirality, and the most stable orientation of self-propulsion velocities relative to the walls. Our findings offer insights into controlled active matter transport and could be useful to sort artificial as well as natural microswimmers (such as bacteria and sperm cells) based on their chirality and self-propulsion velocities.
Keywords: active matter; directed motion; Janus particles; wall-particle interaction; self-propulsion