Dresden 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
HL: Fachverband Halbleiterphysik
HL 32: 2D Materials 2 (joint session DS/HL)
HL 32.5: Vortrag
Mittwoch, 11. März 2026, 16:00–16:15, REC/C213
Phase field crystal model of out-of-plane deformations in thin crystalline sheets induced by thermal expansion — •Emma Radice1, Marco Salvalaglio1, 2, and Axel Voigt1 — 1Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, Dresden, Germany — 2Dresden Center for Computational Materials Science (DCMS), TU Dresden, Dresden, Germany
Thin, flexible crystalline sheets exhibit unique elastic properties due to their ability to undergo out-of-plane deformations.Understanding this behavior requires a description that couples in-plane elasticity, out-of-plane bending and the presence of defects. We develop a mesoscale description for these systems by extending the Phase-Field Crystal (PFC) model. PFC model describes crystal structures at diffusive timescales through a periodic, microscopic density field and it allows one to incorporate both elasticity and topological defects into a continuum description. Our extension permits a spatially varying equilibrium lattice spacing, enabling the representation of localized lattice eigenstrain to mimick thermal effects or lattice mismatch in heterostructures. We validate the extended model against analytical predictions from the Föppl von Kármán equations for uniaxial compression and from Eshelby’s inclusion problem. Using this validated framework, we then study how locally induced compressive stresses drive out-of-plane deformation (buckling) in the sheets. Our approach, implemented via a Fourier pseudo-spectral method, exploits the PFC model’s natural ability to capture the complex, coupled interactions among elasticity, out-of-plane bending and defect dynamics.
Keywords: Phase-Field Crystal (PFC) model; Out-of-plane deformation; Defect dynamics; Lattice eigenstrain; Thin crystalline sheets
