Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 17: Data-driven Materials Science: Big Data and Workflows II

MM 17.5: Vortrag

Dienstag, 10. März 2026, 15:00–15:15, SCH/A251

Leveraging Koopmans band structure for exciton characterization in materials — •Miki Bonacci1, Nicola Colonna1, Edward Linscott1, and Nicola Marzari1,21PSI Center for Scientific Computing, Theory and Data, 5232 Villigen PSI, Switzerland — 2Theory and Simulation of Materials (THEOS), Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland

Exciton characterization is crucial for several materials applications, ranging from energy transport and storage technologies to photocatalysis, plasmonic, sensing. The ab initio state-of-the-art approach is many-body perturbation theory (MBPT), in particular the Bethe-Salpeter equation (BSE) [1]. This is usually built on top of computationally demanding G0W0 quasiparticle (QP) band structures (BSE@G0W0 approach). In this work, we demonstrate how it is possible to construct the BSE Hamiltonian starting from Koopmans functionals [2] eigenvalues as the main ingredient for the BSE Hamiltonian (BSE@KI), obtaining optical spectra with comparable accuracy with respect to the BSE@G0W0, at reduced computational cost. Automated workflows to compute BSE@KI are provided within the AiiDA workflow engine [3].

[1] Onida et al., Rev. Mod. Phys., 74(2), 601-659 (2002)

[2] Dabo et al., Phys. Rev. B, 82, 115121 (2010)

[3] Huber et al., Sci. Data, 7(1):300 (2020)

Keywords: Electronic structure; Excitons; Bethe Salpeter Equation; AiiDA; Koopmans functionals

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden