DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 17: Data-driven Materials Science: Big Data and Workflows II

Dienstag, 10. März 2026, 14:00–15:45, SCH/A251

14:00 MM 17.1 Modelling Diffusion Kinetics in Refractory High Entropy Alloys Using Graph Neural Network Database Models — •Klemens Lechner, Jiyao Zhang, Peter Wagatha, Wolfram Knabl, Helmut Clemens, and David Holec
14:15 MM 17.2 Broken neural scaling laws in machine learning for optical properties of metals — •Max Großmann, Marc Thieme, Malte Grunert, and Erich Runge
14:30 MM 17.3 Simultaneous Learning of Static and Dynamic ChargesPhilipp Stärk, •Philip Loche, Marcel Langer, Henrik Stooß, Michele Ceriotti, and Alexander Schlaich
14:45 MM 17.4 A high-throughput study of heterostructures with polar discontinuities — •Maria Andolfatto, Junfeng Qiao, Davide Campi, and Nicola Marzari
15:00 MM 17.5 Leveraging Koopmans band structure for exciton characterization in materials — •Miki Bonacci, Nicola Colonna, Edward Linscott, and Nicola Marzari
15:15 MM 17.6 Many-body perturbation theory vs. density functional theory: A systematic benchmark for band gaps of solids — •Marc Thieme, Max Großmann, Malte Grunert, and Erich Runge
15:30 MM 17.7 Learning G0W0 Self-Energies in Real Space with Equivariant Neural Networks — •Elisabeth Keller, Karsten W. Jacobsen, and Kristian S. Thygesen
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden