DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2026 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

MM: Fachverband Metall- und Materialphysik

MM 5: Topical Session: Physics-driven Artificial Intelligence for Materials I

Monday, March 9, 2026, 10:15–12:45, SCH/A251

10:15 MM 5.1 Topical Talk: Machine Learning for Materials Discovery: from Big Data to Predictive Insights — •Silvana Botti
10:45 MM 5.2 Screening of high-entropy oxides as oxygen conductors for fuel cells — •Jesper R. Pedersen, Ciku Parida, Benjamin H. Sjølin, and Ivano E. Castelli
11:00 MM 5.3 Interpretable Bayesian Optimization for Autonomous Materials Discovery — •Akhil S. Nair, Lucas Foppa, and Matthias Scheffler
11:15 MM 5.4 Fantastic Polaronic Peaks and Where to Find Them: Learning Vibrational Spectra of a Disordered Energy Material — •Christoph Dähn, Yang Wang, Risov Das, Bettina V. Lotsch, Karsten Reuter, and Christian Carbogno
  11:30 15 min. break
11:45 MM 5.5 Topical Talk: Leveraging data science technologies to enable AI-driven materials design — •Tilmann Hickel, Han Mai, Shankha Nag, Sarath Menon, Osamu Waseda, Liam Huber, Jan Janssen, and Jörg Neugebauer
12:15 MM 5.6 Unveiling the Core of Materials Properties via SISSO and Sensitivity Analysis: Use-case Demonstration for Perovskites — •Lucas Foppa and Matthias Scheffler
12:30 MM 5.7 Towards automated calculation of phase diagrams with machine learning interatomic potentials — •Sarath Menon and Ralf Drautz
100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden