MM 5: Topical Session: Physics-driven Artificial Intelligence for Materials I
Montag, 9. März 2026, 10:15–12:45, SCH/A251
 |
10:15 |
MM 5.1 |
Topical Talk:
Machine Learning for Materials Discovery: from Big Data to Predictive Insights — •Silvana Botti
|
|
|
 |
10:45 |
MM 5.2 |
Screening of high-entropy oxides as oxygen conductors for fuel cells — •Jesper R. Pedersen, Ciku Parida, Benjamin H. Sjølin, and Ivano E. Castelli
|
|
|
 |
11:00 |
MM 5.3 |
Interpretable Bayesian Optimization for Autonomous Materials Discovery — •Akhil S. Nair, Lucas Foppa, and Matthias Scheffler
|
|
|
 |
11:15 |
MM 5.4 |
Fantastic Polaronic Peaks and Where to Find Them: Learning Vibrational Spectra of a Disordered Energy Material — •Christoph Dähn, Yang Wang, Risov Das, Bettina V. Lotsch, Karsten Reuter, and Christian Carbogno
|
|
|
| |
11:30 |
|
15 min. break
|
|
|
 |
11:45 |
MM 5.5 |
Topical Talk:
Leveraging data science technologies to enable AI-driven materials design — •Tilmann Hickel, Han Mai, Shankha Nag, Sarath Menon, Osamu Waseda, Liam Huber, Jan Janssen, and Jörg Neugebauer
|
|
|
 |
12:15 |
MM 5.6 |
Unveiling the Core of Materials Properties via SISSO and Sensitivity Analysis: Use-case Demonstration for Perovskites — •Lucas Foppa and Matthias Scheffler
|
|
|
 |
12:30 |
MM 5.7 |
Towards automated calculation of phase diagrams with machine learning interatomic potentials — •Sarath Menon and Ralf Drautz
|
|
|