Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 9: Topical Session: Physics-driven Artificial Intelligence for Materials II

Montag, 9. März 2026, 15:45–18:30, SCH/A251

15:45 MM 9.1 Topical Talk: Atomistic simulations in the ternary Fe-O-H system: interatomic potential development and applications — •Baptiste Bienvenu, Mira Todorova, Matous Mrovec, Ralf Drautz, Dierk Raabe, and Jörg Neugebauer
16:15 MM 9.2 Learning long-range interactions with equivariant charges — •Marcel F. Langer, Egor Rumiantsev, Tulga-Erdene Sodjargal, Michele Ceriotti, and Philip Loche
16:30 MM 9.3 Physics-informed Hamiltonian-learning for large-scale electronic-structure calculations — •Martin Schwade, Shaoming Zhang, Frederik Vonhoff, Frederico P. Delgado, and David A. Egger
16:45 MM 9.4 Making equivariant graph neural network prediction of electronic structure properties fast and accurate — •Chen Qian, Valdas Vitartas, James Kermode, and Reinhard J. Maurer
  17:00 15 min. break
17:15 MM 9.5 Predicting the Thermal Properties of Semiconductor Defects with Equivariant Neural Networks — •Jonas A. Oldenstaedt, Manuel Grumet, Xiangzhou Zhu, Patrick Rinke, and David A. Egger
17:30 MM 9.6 Learning exact exchange with symbolic regression — •Noah Hoffmann, Santiago Rigamonti, and Claudia Draxl
17:45 MM 9.7 Development of a GRACE Machine-Learning Potential for Modeling SiC Epitaxial Growth — •Anders Vesti, Thomas Hammerschmidt, and Ralf Drautz
18:00 MM 9.8 Integrating FlashMD into LAMMPS for Efficient Long-Timestep Molecular Dynamics — •Johannes Spies, Filippo Bigi, and Michele Ceriotti
18:15 MM 9.9 Learning to Converge: ML-based Initialization for Fast DFTB Simulations — •Maximilian L. Ach, Karsten Reuter, and Chiara Panosetti
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden