Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
O: Fachverband Oberflächenphysik
O 61: Organic molecules on inorganic substrates: electronic, optical and other properties II
O 61.10: Vortrag
Mittwoch, 11. März 2026, 17:15–17:30, HSZ/0201
Unveiling the precise configuration of a molecular junction — Joshua Scheidt1,3, Jonas Lederer3, Mong-Wen Gu1,2, Hadi Arefi1,2, Jose M. Guevara1,2, Amin Karimi1,2, Rustem Bolat1,2, Marvin Knol1,2, Klaus-Robert Müller3, F. Stefan Tautz1,2, and •Christian Wagner1,2 — 1PGI-3, Forschungszentrum Jülich, Germany — 2JARA, Fundamentals of Future Information Technology, Germany — 3Institut für Softwaretechnik und Theoretische Informatik, Technische Universität Berlin, Germany
Exploring structure-property relationships of molecular junctions is crucial for future single-molecule applications. While, e.g., a strong scattering of conductance values is found in break-junctions, the responsible structural variations cannot be identified. Here, we describe NC-AFM/STM-based two-contact manipulation experiments on PTCDA (3,4,9,10-perylene-tetracarboxylic dianhydride) on Ag(111) and analyze them using a DFT-based machine learning model of the junction. Our approach allows solving the inverse problem of configuration identification from force gradient data[1] and reveals the origin of the 3-4 fold conductance variations observed upon sub-Angstrom changes in the junction geometry.
[1] J. Scheidt et al., J. Phys. Chem. C 127, 13817 (2023)
Keywords: STM; molecular manipulation; PTCDA; machine learning; molecular electronics