Dresden 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
QI: Fachverband Quanteninformation
QI 14: Quantum Information Poster Session
QI 14.17: Poster
Mittwoch, 11. März 2026, 18:00–21:00, P4
Effects of geometry on the error threshold of the toric code — •Daniel Lessing, Calvin Kraemer, Jan Alexander Koziol, Anja Langheld, and Kai Phillip Schmidt — Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
The Random-Bond Ising Model can serve as a theoretical model for determining the error threshold of the toric code. This threshold is the maximum physical error rate tolerable for fault-tolerant quantum computation. We employ Monte Carlo Integration combined with finite-size scaling to map the RBIM's phase boundary for different temperatures and antiferromagnetic bond concentrations, which correspond to the different error rates in the toric code. The intersection of this phase boundary with the Nishimori line directly defines the critical error threshold for the toric code. Our investigation determines how this critical error threshold is influenced by varying the underlying geometry of the lattice.
Keywords: Quantum Error Correction; Monte Carlo; Ising Model; Toric Code; Error Threshold
