Dresden 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
QI: Fachverband Quanteninformation
QI 21: Quantum Information: Concepts and Methods III
QI 21.10: Vortrag
Freitag, 13. März 2026, 12:30–12:45, BEY/0245
Quantitative bound entanglement in the Horodecki two-qutrit states — Gael Sentis1 and •Jens Siewert2, 3 — 1Grup d’Informació Quàntica, Universitat Autònoma de Barcelona, Barcelona, Spain — 2University of the Basque Country and EHU Quantum Center, Bilbao, Spain — 3Ikerbasque, Basque Foundation of Science, Bilbao, Spain
In 1999, Horodecki et al. [1] introduced a one-parameter family of two-qutrit states that has since become an archetypal example of entangled states with a positive partial transpose (PPT). PPT states are typically highly mixed, and their entanglement is widely regarded as rather weak. Yet the actual degree of this weakness has remained unclear. In Ref. [2], we provided a numerically exact solution for the linear entropy of the Horodecki two-qutrit PPT-entangled states. However, this result has limited practical relevance, as linear entropy is not commonly used in entanglement quantification, and no approximate analytical expression is known. In the present contribution, we investigate whether an exact formula for the concurrence of this emblematic family of states can be obtained.
[1] P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev. Lett. 82, 1056 (1999).
[2] G. Sentís, C. Eltschka, and J. Siewert, Phys. Rev. A 94, 020302(R) (2016).
Keywords: bipartite entanglement; bound entanglement; entanglement quantification
