Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

SOE: Fachverband Physik sozio-ökonomischer Systeme

SOE 17: Focus Session: Physics of AI II (joint session SOE/DY)

Freitag, 13. März 2026, 09:30–12:45, GÖR/0226

09:30 SOE 17.1 Hauptvortrag: What can we learn from neural quantum states?Brandon Barton, Juan Carrasquilla, Anna Dawid, Antoine Georges, Megan Schuyler Moss, Alev Orfi, Christopher Roth, Dries Sels, Anirvan Sengupta, and •Agnes Valenti
10:00 SOE 17.2 The NN/QFT correspondence — •Ro Jefferson
10:15 SOE 17.3 Online Learning Dynamics and Neural Scaling Laws for a Perceptron Classification Problem — •Yoon Thelge, Marcel Kuhn, and Bernd Rosenow
10:30 SOE 17.4 Power-Law Correlations in Language: Criticality vs. Hierarchical Generative Structure — •Marcel Kühn, Max Staats, and Bernd Rosenow
10:45 SOE 17.5 Dynamics of neural scaling laws in random feature regression — •Jakob Kramp, Javed Lindner, and Moritz Helias
  11:00 15 min. break
11:15 SOE 17.6 Hauptvortrag: Creativity in generative AI — •matthieu wyart
11:45 SOE 17.7 Understanding Generative Models via Interactions — •Claudia Merger, Alexandre Rene, Kirsten Fischer, Peter Bouss, Sandra Nestler, David Dahmen, Carsten Honerkamp, Moritz Helias, and Sebastian Goldt
12:00 SOE 17.8 From Kernels to Features: A Multi-Scale Adaptive Theory of Feature Learning — •Javed Lindner, Noa Rubin, Kirsten Fischer, David Dahmen, Inbar Seroussi, Zohar Ringel, Michael Krämer, and Moritz Helias
12:15 SOE 17.9 Statistical physics of deep learning: Optimal learning of a multi-layer perceptron near interpolationJean Barbier, Francesco Camilli, Minh-Toan Nguyen, Mauro Pastore, and •Rudy Skerk
12:30 SOE 17.10 Phase Transitions as Rank Transitions: Connecting Data Complexity and Cascades of Phase Transitions in analytically tractable Neural Network Models — •Björn Ladewig, Ibrahim Talha Ersoy, and Karoline Wiesner
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Dresden