DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

GR: Fachverband Gravitation, Relativistische Astrophysik und Kosmologie

GR 10: Poster

GR 10.16: Poster

Mittwoch, 18. März 2026, 16:15–18:45, Redoutensaal

Adequate Coordinate System for Space Navigation and Relativity — •Hans-Otto Carmesin — Univ. Bremen, FB 1, Postfach 330440, 28334 Bremen — Studienseminar Stade, Bahnhofstr. 5, 21682 Stade — Gymn. Athenaeum, Harsefelder Straße 40, 21680 Stade

The International Astronomical Union (IAU) realized, that the coordinate systems of relativity theory are insufficient for space navigation. Therefore, the IAU proclaimed the problem of finding an adequate coordinate system (ACS) for space navigation and relativity.

Here, that problem is solved:

(1) A measurement procedure is presented. (2) For each Point P in the universe, an ACS is derived, and its velocity vACS,CS relative to an arbitrary coordinate system (CS) is derived. (3) The ACS is confirmed by an observation at Earth, using two atomic clocks, one at the PTB and one at the MPQ (Max Planck Institute for Quantum Optics). (4) The universal zero of the fractional kinematic time difference δ tkin,fractional is derived. (5) For each Point P, δ tkin,fractional is derived. This is confirmed by observation data at Galileo satellites. As a consequence, the precision of clocks onboard spacecrafts can be improved. This can provide improvements in space navigation, remote sensing or geoinformatics.

Carmesin, H.-O. (2025): On the Dynamics of Time, Space and Quanta. Berlin: Verlag Dr. Köster. Carmesin, H.-O. (2025): Construction of a Physically Adequate Coordinate System with Help of an Observation on Earth’s Ground. J Geosci Earth Planet Syst, 1(1), pp. 01-12.

Keywords: Relativity; Reference Frame; Quantum Physics; Space Navigation; Foundations of Physics

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Erlangen