Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
GR: Fachverband Gravitation, Relativistische Astrophysik und Kosmologie
GR 19: Numerical Relativity III
GR 19.4: Vortrag
Freitag, 20. März 2026, 11:45–12:00, KH 02.012
Machine Learning-Accelerated HLLD Riemann Solver for GRMHD — •Keneth Miler — Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, D-60438
We present a machine-learning-enhanced HLLD Riemann solver for GRMHD simulations that significantly reduces computational cost. The primary bottleneck in HLLD schemes is the iterative pressure recovery from conserved variables. We replace this expensive root-finding procedure with a trained neural network that directly predicts primitive pressure.
Keywords: GRMHD; Riemann solver; Machine learning