Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MP: Fachverband Theoretische und Mathematische Grundlagen der Physik

MP 5: Quantum Mechanics: Spectral Theory and Many-Body Systems

MP 5.1: Hauptvortrag

Mittwoch, 18. März 2026, 13:45–14:15, KH 02.013

Nontrivial Riemann Zeros as Spectrum — •Enderalp Yakaboylu — Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg

Define Υ(s) := Γ(s+1)  (1−21−s)   ζ(s) , and denote by Z := {γ ∈ C  |  Υ (γ)=0 } its set of zeros, which includes both the periodic eta zeros, determined by (1−21−s) =0 with s ≠ 1 , and the nontrivial zeta zeros ρ. We introduce a non-symmetric operator

  R ∶ D(R) ⊂ L2([0,∞)) → L2([0,∞))   ,

with spectrum

  σ(R) = 

i
1/2− γ 
 |  γ ∈ Z 

  . 

Assuming that all nontrivial zeros of the zeta function are simple, we construct a positive semidefinite operator Ŵ intertwining R and its adjoint on the spectral subspace associated with the nontrivial zeros,

  RŴ = Ŵ R   .

The positivity of Ŵ , which represents an operator-theoretic form of (Bombieri’s refinement of) Weil’s positivity criterion, enforces ℜ(ρ)=1/2 for all ρ , in accordance with the Riemann Hypothesis. Furthermore, from the similarity between R and R, we obtain a self-adjoint Hilbert-Pólya operator, whose spectrum coincides with the imaginary parts of the nontrivial zeta zeros.

The presented framework can be generalized to higher-order zeta zeros, if such exist, and to any other Mellin-transformable L-function satisfying a functional equation.

Keywords: Hilbert-Pólya Conjecture; Berry-Keating Hamiltonian; Riemann Zeta Function

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Erlangen