DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 28: Data, AI, Computing, Electronics III

Dienstag, 17. März 2026, 16:15–18:45, KH 00.024

16:15 T 28.1 Multi-Modal track reconstruction using Graph Neural Networks at Belle II — •Tristan Brandes, Torben Ferber, Giacomo De Pietro, and Lea Reuter
16:30 T 28.2 Graph Neural Networks for multi-hypothesis clustering in the Belle II Electromagnetic Calorimeter to improve hadron clustering — •Jonas Eppelt and Torben Ferber
16:45 T 28.3 Point Cloud Segmentation for the Belle II GNN-Based Tracking — •Daniel Grossmann, Tristan Brandes, Giacomo De Pietro, Torben Ferber, and Lea Reuter
17:00 T 28.4 Graph Neural Network based inclusive flavour tagger at the LHCb experiment — •Yukai Zhao, Sara Celani, Stephanie Hansmann-Menzemer, and Pelian Li
17:15 T 28.5 Machine-Learning based Energy Regression of Muon Detector Showers in CMS — •Mascha Hackmann, Ayse Asu Guvenli, Karim El Morabit, and Gregor Kasieczka
17:30 T 28.6 Machine-Learning Based Reconstruction of Muon Detector Showers in CMS — •Ayse Asu Guvenli, Karim El Morabit, Gregor Kasieczka, and Mascha Hackmann
17:45 T 28.7 Reconstructing missing transverse momentum for electroweak precision measurements at the ATLAS experiment — •Gabriel Sanchez Shestakova, Matthias Schott, Timo Saala, and Philip Bechtle
18:00 T 28.8 Secondary Particle Tracking with Graph Neural Networks for the ATLAS Experiment — •Hannah Schlenker, Sebastian Dittmeier, and André Schöning
18:15 T 28.9 Keeping Track of Graphs: 4D Tracking with Graph Neural Networks at Muon Colliders — •Lukas Bauckhage
18:30 T 28.10 Machine Learning Models for Separating Signal and Background Events in LHC pp CollisionsOleksandr Shekhovtsov, André Sopczak, and •Lukas Vicenik
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Erlangen