DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 7: Data, AI, Computing, Electronics I

T 7.6: Vortrag

Montag, 16. März 2026, 17:30–17:45, KH 00.024

Application of FiLM Neural Networks for π/K Separation in the PANDA Barrel DIRC — •Daniel Markhoff1,2, Roman Dzhygadlo2, Jochen Schwiening2, and Yannic Wolf2,31University of Edinburgh, Edinburgh, United Kingdom — 2GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany — 3Goethe-Universität Frankfurt, Frankfurt, Germany

Machine learning techniques were investigated as an alternative approach to PID in the PANDA Barrel DIRC at FAIR. FiLM neural-network models were trained on simulated Geant4 photon-hit patterns and achieved >2σ π/K separation at 3.5 GeV/c. The models provide a significant reduction in computation time compared to the conventional time-based imaging reconstruction, while retaining competitive classification performance. These results indicate that ML-based PID has strong potential to complement or accelerate traditional DIRC reconstruction methods.

Keywords: PANDA; DIRC; particle identification; machine learning; FiLM networks

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Erlangen