Mainz 2026 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
A: Fachverband Atomphysik
A 11: Atomic Systems in External Fields I
A 11.7: Vortrag
Dienstag, 3. März 2026, 12:45–13:00, N 2
Estimating quantum entropies using a quantum circuit and a neural network — •Sangyun Lee1, Hyukjoon Kwon2, and Jae Sung Lee3 — 1Institut für Physik, johannes gutenberg university — 2School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea — 3School of Physics, Korea Institute for Advanced Study, Seoul, 02455, Korea
Entropy is one of the key quantities in physics. In particular, it plays important roles in phase transitions, heat engines, information processing, and entanglement. However, estimating entropy is difficult because it is not a standard physical observable and requires access to the full probability distribution of the system. To address this challenge, we propose a method that combines a quantum circuit with a neural network. Our approach is applicable to von Neumann entropy and Rényi entropy. We validate our method on an XXZ chain model and find that it can sensitively estimate the model*s entanglement entropy.
Keywords: quantum entropy; quantum computer; neural network
