Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 21: Quantum Computing and Simulation III

Q 21.2: Vortrag

Dienstag, 3. März 2026, 11:30–11:45, P 10

The sub-Riemannian geometry of measurement based quantum computation — •Lukas Hantzko — Institut für Theoretische Physik, Leibniz Universität Hannover, Hannover, Germany

The computational power of symmetry-protected phases of matter can be accessed through local measurements, but what is the most efficient way of doing so? In this work, we show that minimizing operational resources in measurement-based quantum computation (MBQC) on subsystem symmetric resource states amounts to solving a sub-Riemannian geodesic problem between the identity and the target logical unitary. This reveals a geometric structure underlying MBQC and offers a principled route to optimize quantum processing in computational phases. (arxiv:2508.17808)

Keywords: Measurement Based Quantum Computation; Optimal Control Theory; Hamiltonian Simulation; Fault Tolerance

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Mainz