DPG Phi
Verhandlungen
Verhandlungen
DPG

Mainz 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 4: Quantum Computing and Simulation I

Q 4.1: Vortrag

Montag, 2. März 2026, 11:45–12:00, P 10

Mølmer-Sørensen Gates Robust to AC Shifts — •Erin Feldkemper1, Victor Martinez Lahuerta1, Christian Ospelkaus1, Naceur Gaaloul1, and Klemens Hammerer2, 3, 41Institut für Quantenoptik, Leibniz Universität Hannover — 2Institut für Theoretische Physik, Universität Innsbruck — 3Institut für Theoretische Physik, Leibniz Universität Hannover — 4IQOQI Österreichische Akademie der Wissenschaft

Fast and high-fidelity quantum gates are essential for scaling trapped-ion quantum computing, and their optimization has become increasingly important. One of the key challenges is mitigating the AC shift, which can arise in both laser-driven and microwave-driven gates, introducing errors that degrade the performance. In this theory work, we focus on microwave-driven Mølmer-Sørensen gates and specifically the impact of the AC Zeeman shift on the gate performance. To this end, we derived an effective Hamiltonian including leading-order AC corrections. In order to reduce the noise, we focus on two methods. The first consists in using spin echoes, which exploits the fact that the shift is linear with the Sz spin component. The other method is to time-dependently control the parameters of the gate and optimize them using optimal control theory. To evaluate the fidelity of the protocols, we use Kraus operators as a figure of merit for a good quantum channel. Both of these methods are exploited, compared to each other, and would ultimately be combined to improve the gate precision.

Keywords: Mølmer-Sørensen Gates; AC Shifts; Optimal Control Theory; Spin Echoes; Robustness

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Mainz