Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 41: Poster – Quantum Technologies II & Laser Technology

Q 41.9: Poster

Mittwoch, 4. März 2026, 17:00–19:00, Philo 2. OG

Cryogenic integrated circuits for scalable trapped-ion based quantum computers — •Sebastian Halama1, Marco Bonkowski1, Peter Toth2, Alexander Meyer2, Marius Neumann3, Vadim Issakov2, and Christian Ospelkaus1,41Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany — 2Institut für CMOS Design, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany — 3Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany — 4Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig

State of the art quantum computers are still too small and have a too high error rate to tackle any useful problem. Surface-electrode ion traps are a promising platform to overcome both issues. However, with increased size the number of required electrical signal grows. Specially for cryogenic vacuum chambers, this will eventually result in a non tolerable heat load originating from cables. A possible solution is to hybrid-integrate control electronics together with the ion trap [1, 2]. This can potentially reduce the number of externally applied control signals to only a few, while it is still possible to supply hundreds of electrodes with suitable voltages. We present our latest work on integrating DC and microwave generators with a cryogenic ion trap.

[1] A. Meyer et al., DOI: 10.1109/TIM.2025.3571087

[2] P. Toth et al., DOI: 10.1109/ISSCC49661.2025.10904696

Keywords: Ion-Traps; Electronics; Cryogenic; Scalability

100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Mainz