DPG Phi
Verhandlungen
Verhandlungen
DPG

Mainz 2026 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 47: Quantum Technologies – Sensing II

Q 47.5: Vortrag

Donnerstag, 5. März 2026, 12:00–12:15, P 5

Magnetic Field Imaging in SiC Quantum Microscope — •Ayisha Suhana1,2, Tatiana A. U Svetikova1,2, Christoph Schneider1, Manfred Helm1,2, Andrei N Anisimov1, and Georgy V Astakhov11Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany — 2Technische Universitat Dresden, Dresden, Germany

Studying neuronal activity requires detecting ultra-weak, dynamic magnetic fields generated by neural electrical signals. Quantum sensors based on spin defects, specifically NV centers in diamond, have demonstrated applications from action-potential detection to battery-current monitoring and geological mapping. These advances motivate the exploration of wide-bandgap semiconductors, such as silicon carbide (SiC) and hexagonal boron nitride for scalable quantum sensing.

We used silicon vacancy centers in SiC for wide-field magnetic imaging using optically detected magnetic resonance with dual-frequency, microwave-free [1], and time-resolved sensing protocols. The magnetic fields from continuous and pulsed currents in a wire beneath the sample are reconstructed using a Python-based workflow. The quantum silicon carbide microscope achieves a 50 * 50-pixel field of view with 30 *m spatial and 50 ms temporal resolution, enabling magnetic field imaging in current-carrying structures [2], with potential applications in biomedical research.

[1] D. Simin et al., Phys. Rev. X 6, 031014 (2016) [2] A. Suhana et al., arXiv:2509.14888 (2025)

Keywords: wide-field magnetic imaging; bio-magnetic imaging; quantum sensing; neuronal magnetic fields; silicon vacancy centers

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2026 > Mainz