DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2017 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

O: Fachverband Oberflächenphysik

O 94: Graphene: Electronic Properties, Structure and Substrate Interaction II

O 94.13: Vortrag

Donnerstag, 23. März 2017, 18:00–18:15, TRE Ma

Graphene-multiferroic interfaces for spintronics applications — •Zeila Zanolli — Institute for Theoretical Solid State Physics, RWTH Aachen University and ETSF, D-52056 Aachen, Germany.

Graphene and magnetoelectric multiferroics are promising materials for spintronic devices with high performance and low energy consumption. A very long spin diffusion length and high carrier mobility make graphene attractive for spintronics. The coupling between ferroelectricity and magnetism, which characterises magnetoelectrics, opens the way towards unique device architectures. In this work[1], we combine the features of both materials by investigating the interface between graphene and BaMnO3, a magnetoelectric multiferroic. We show that electron charge is transferred across the interface and magnetization is induced in the graphene sheet due to the strong interaction between C and Mn. Depending on the relative orientation of graphene and BaMnO3, a quasi-half-metal or a magnetic semiconductor can be obtained. A remarkably large proximity induced spin splitting of the Dirac cones (∼300 meV) is achieved. We also show how doping with acceptors can make the high-mobility region of the electronic bands experimentally accessible. This suggests a series of possible applications in spintronics (e.g. spin filters, spin injectors) for hybrid organic-multiferroic materials and reveals hybrid organic-multiferroics as a new class of materials that may exhibit exotic phenomena such as the quantum anomalous Hall effect and a Rashba spin-orbit induced topological gap.

[1] Z. Zanolli, Scientific Reports, 6, 31346 (2016)

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2017 > Dresden