DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2019 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

HL: Fachverband Halbleiterphysik

HL 35: HL Poster II

HL 35.21: Poster

Mittwoch, 3. April 2019, 17:30–20:00, Poster E

Degradation of telecom wavelength LEDs by high energy proton irradiation — •Heinz-Christoph Neitzert1, Giovanni Landi1, Juergen Bundesmann2, and Andrea Denker21Dept. of Industrial Engineering (DIIn), Salerno University, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy — 2Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Protons for Therapy, Hahn-Meitner Platz 1, 14109 Berlin, Germany

Future space mission utilize more and more optical links for internal data transmission but also for long-range open-space communications between different satellites. While silicon based components are strongly degrading under high energy particle irradiation, wide bandgap semiconductors are generally found to be more radiation hard. Low bandgap semiconductors are, however also often employed in space for data transmission and for high efficient solar cells. InGaAsP LEDs emitting at 1550 nm have been irradiated with a 68 MeV proton beam with fluences up to 1e13 p+/cm^2. While the peak emission wavelength and the spectral width did not change with irradiation, a more than 2 orders of magnitude decrease of the emitted power has been found for maximum fluence. Besides the properties as light emitters, also the complete characterization of the electrical characteristics as receiver under illumination with 1550 nm light has been done. The changes of the extracted device parameters are discussed, which enabled, together with impedance spectroscopy data to give a detailed picture of the irradiation induced electronic defects.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2019 > Regensburg