Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

BP: Fachverband Biologische Physik

BP 15: Active Matter III (joint session DY/BP/CPP)

BP 15.8: Vortrag

Dienstag, 17. März 2020, 15:45–16:00, ZEU 160

Effect of Vicsek-like Activity on the collapse of a Flexible Polymer — •Subhajit Paul1, Suman Majumder1, Subir K Das2, and Wolfhard Janke11Institüt für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany — 2JNCASR, Jakkur P.O., Bangalore- 560064, India.

Dynamics of various biological filaments can be understood within the framework of active polymer models. In this context, we construct a bead-spring model for a flexible polymer chain in which the activity or self-propulsion of the beads has been defined in the Vicsek-like manner. Following a quench from a high-temperature coil phase to the low-temperature state we have studied the nonequilibrium dynamics of this model by solving the Langevin equation via molecular dynamics (MD) simulations. The low-T equilibrium state for the passive polymer in which the interaction among the beads modeled via standard LJ potential, is a compact globular one. Results from our MD simulations reveal that the globular state is also likely to be the final equilibrium in the active case also, the nonequilibrium dynamics is quite different than the passive case. We observe that the deviation from the intermediate ’pearl-necklace’ arrangement and the formation of elongated structures for the polymer increases with activity. Also, it appears that whether smaller values of the activity makes the coarsening faster, activity beyond a certain value makes it slower. On this nonequilibrium front we also compare various results with that of the passive case, viz., scaling laws related to collapse time, cluster coarsening, etc.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden