DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

O: Fachverband Oberflächenphysik

O 18: Plasmonics and Nanooptics II: Ultrafast and Nonlinear Phenomena (joint session O/CPP)

O 18.9: Talk

Monday, March 16, 2020, 17:15–17:30, WIL A317

Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a Au/ZnO nanohybrid — •Jin-Hui Zhong1, Jan Vogelsang2, Jue-Min Yi1, Dong Wang3, Lukas Wittenbecher2, Sara Mikaelsson2, Anke Korte1, Abbas Chimeh1, Cord L. Arnold2, Peter Schaaf3, Erich Runge3, Anne L'Huillier2, Anders Mikkelsen2, and Christoph Lienau11Carl von Ossietzky University, 26111 Oldenburg, Germany — 2Lund University, SE-221 00 Lund, Sweden — 3Technische Universität Ilmenau, 98693 Ilmenau, Germany

Nanohybrids of plasmon/quantum emitter system can dramatically enhance coherent harmonic generation, often resulting from the coupling of fundamental plasmonic fields to higher-energy, electronic or excitonic transitions of quantum emitters. The ultrafast optical dynamics of such hybrids have been rarely explored. Here, we study those dynamics by interferometrically probing nonlinear optical emission from individual porous gold nanosponges infiltrated with zinc oxide (ZnO) emitters. Few-femtosecond time-resolved photoelectron emission microscopy reveals multiple long-lived localized plasmonic hot spot modes at the surface of single nanosponges, resonant in a broad spectral range. The hot spot near-field couples to the ZnO excitons, enhancing sum-frequency generation, and boosting resonant excitonic emission. The quantum pathways of the coupling are further uncovered from a two-dimensional spectrum correlating fundamental plasmonic excitations to nonlinearly driven excitonic emissions.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden