Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

TT: Fachverband Tiefe Temperaturen

TT 53: Topology: Majorana Physics

TT 53.7: Vortrag

Donnerstag, 19. März 2020, 11:00–11:15, HSZ 103

Long-lived Polaronic Majorana Edge Correlation via Non-Markovianity — •Oliver Kästle1, Ying Hu2, and Alexander Carmele11Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik von Halbleitern, Technische Universität Berlin, 10623 Berlin, Germany — 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China

Majorana fermions of 1D wires are a hot topic, which is motivated by the interest to use topology as a way to make quantum systems robust against microscopic imperfections. However, it has been shown that quantum correlations between Majorana states will rapidly decay when the system is coupled to a Markovian bath, even when it preserves parity [1, 2]. Here we go beyond the Markovian approximation and study the dynamics of Majorana edge correlation in the presence of dissipation. Taking the example of an ideal Kitaev chain coupled to a phonon bath, we derive a second-order perturbative polaron master equation. We find that the inclusion of a memory kernel can lead to significant suppression of the decoherence of Majorana edge correlations, thanks to the time-dependent system correlations counteracting the dissipation effect in the weak coupling regime. Moreover, we find that the presence of a next-to-nearest-neighbour interaction can provide an additional mechanism for stabilizing the edge correlations.

[1] Ying Hu, Zi Cai, M. A. Baranov, and P. Zoller, Phys. Rev. B 92, 165118 (2015)

[2] A. Carmele, M. Heyl, C. Kraus, and M. Dalmonte, Phys. Rev. B 92, 195107 (2015).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden