DPG Phi
Verhandlungen
Verhandlungen
DPG

Mainz 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

HK: Fachverband Physik der Hadronen und Kerne

HK 66: Heavy-Ion Collisions and QCD Phases XIV

HK 66.5: Vortrag

Donnerstag, 31. März 2022, 17:00–17:15, HK-H2

Impact of hadronic interactions and conservation laws on cumulants of conserved charges in a dynamical model — •Jan Hammelmann1 and Hannah Elfner2,11Frankfurt Institute for Advanced Studies (FIAS) — 2GSI Helmholtzzentrum für Schwerionenforschung

Understanding the phase diagram of QCD by measuring fluctuations of conserved charges in heavy-ion collision is one of the main goals of the beam energy scan program at RHIC. Within this work, we calculate the role of hadronic interactions and momentum cuts on cumulants of conserved charges up to fourth order in a system in equilibrium within a hadronic transport approach (SMASH). In our model the net-baryon, net-charge and net-strangeness is perfectly conserved on an event-by-event basis and the cumulants are calculated as a function of subvolume sizes and compared to analytic expectations. We find a modification of the kurtosis due to charge annihilation processes in systems with simplified degrees of freedom. Furthermore the result of the full SMASH hadron gas for the net-baryon and net-proton number fluctuations is presented for systems with zero and finite values of baryochemical potential. Additionally we find that due to dynamical correlations the cumulants of the net-baryon number cannot be recovered from the net-protons. Finally the influence of deuteron cluster formation on the net-proton and net-baryon fluctuations in simplified system is shown. This analysis is important to better understand the relation between measurements of fluctuations in heavy-ion collisions and theoretical calculation which are often performed in a grand canonical ensemble.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Mainz