Q 20: Quantum Many-Body Dynamics
  Dienstag, 12. März 2024, 11:00–13:00, HS 3118
  
    
  
  
    
      
        
          
            
              |  | 11:00 | Q 20.1 | Loss-tolerant photonic fusion networks for quantum computing with quantum emitters — •Matthias C. Löbl, Stefano Paesani, and Anders S. Sørensen | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 11:15 | Q 20.2 | Quantum stochastic resetting in lattices with long-range hopping — •Sayan Roy, Shamik Gupta, and Giovanna Morigi | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 11:30 | Q 20.3 | Topological Quantum Optics in Atomic Emitter Arrays — •Jonathan Sturm and Adriana Pálffy | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 11:45 | Q 20.4 | Exploring the phase structure of the three-flavor Schwinger model in the presence of a chemical potential with measurement- and gate-based quantum computing — •Stephan Schuster, Stefan Kühn, Lena Funcke, Tobias Hartung, Marc-Oliver Pleinert, Joachim von Zanthier, and Karl Jansen | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:00 | Q 20.5 | Quantum state preparation via engineered ancilla resetting — Daniel Alcalde Puente, Felix Motzoi, Tommaso Calarco, Giovanna Morigi, and •Matteo Rizzi | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:15 | Q 20.6 | Decoding the projective transverse field Ising model — •Felix Roser, Hans Peter Büchler, and Nicolai Lang | 
        
          |  |  | 
      
    
      
        
          
            
              |  | 12:30 | Q 20.7 | Antiferromagnetic bosonic t-J models and their quantum simulation — •Timothy J. Harris, Ulrich Schollwöck, Annabelle Bohrdt, and Fabian Grusdt | 
        
          |  |  | 
      
    
      
        
          
            |  | 12:45 | Q 20.8 | The contribution has been withdrawn. | 
        
          |  |  |