DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DS: Fachverband Dünne Schichten

DS 1: Thin Film Properties: Structure, Morphology and Composition (XRD, TEM, XPS, SIMS, RBS, AFM, ...) 1

DS 1.1: Vortrag

Montag, 5. September 2022, 09:30–09:45, H14

Low-energy ion channeling in nanocubes — •Shiva Choupanian1, Wolfhard Möller2, Martin Seyring1, and Carsten Ronning11Institute of Solid State Physics, Friedrich Schiller University Jena — 2Helmholtz-Zentrum Dresden-Rossendorf

Focused ion beam (FIB) processing with low-energy ions has become a standard technique for the manipulation of nanostructures. Many underlying ion beam effects that deviate from conventional high-energy ion irradiation of bulk systems are considered today; however, ion channeling with its consequence of significant deeper penetration depth has been only theoretically investigated in this regime. We present here an experimental approach to determine the channeling of low-energy ions in crystalline nanoparticles by measuring the sputter yield derived from SEM images taken after irradiation under various incident ion angles. Channeling maps of 30 and 20 keV Ga+ ions in Ag nanocubes have been identified and fit well with the theory. Indeed, channeling has a significant impact on the transport of energetic ions in crystals due to the large critical angle at low ion energies, thus being relevant for any FIB-application. Consequently, the obtained sputter yield clearly differs from amorphous materials; therefore, it is recommended not to rely only on, e.g., ion distribution depths predicted by standard Monte-Carlo (MC) algorithms for amorphous materials.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg